Total No. of Pages: 2	
-----------------------	--

Seat	
No.	

T.E.(Computer Science and Engineering) (Semester-V) Examination, May - 2017 COMPUTER GRAPHICS

		2			Sub. C	ode: 66	5293		5	
				day, 15-05 11.00 a.m.					Total I	Marks: 50
Instr	uction	ns:	1) 2) 3)	and Q.No Figures to	nd Q.No.6 o.2 and any o the right uitable da	one from indicate fu	Q.No.4 a ıll marks	and Q.No	-	rom Q.No.1
Q1)	a)	-		vith the he	elp of tran	nsformati	on matri	x 3D Sc	caling and	d Shearing [6]
	b)	Eval	uate	the Brese	nham's li	ne drawii	ng algor	ithm for	line (0, 0	0) to (8, 8). [6]
Q2)	a)	Wha	ıt are	plane geo	metric pr	ojections	? Explai	in axono	ometric p	rojections. [6]
	b)	Expl	lain S	Sutherland	l cohen sı	ubdivisio	n metho	d for lin	e clippin	g. [6]
Q3)	a)	Expl	lain F	Real time s	scan conv	ersion te	chnique	•		[7]
	b)	Expl	lain a	ntialiasing	g techniqu	ies.				[6]
Q4)	a)	Wha	it are	B-spline c	eurves? Ex	xplain cor	nvex hul	l propert	y of B-sp	oline curve. [6]
	b)	-	ain thations		-dither ha	lftoning r	nethod to	o genera	te differe	nt intensity [6]
		3							5	<i>P.T.O.</i>

- **Q5)** a) Explain Z-buffer algorithm. State advantages and disadvantages. [6]
 - b) Explain the methods for controlling motion in computer animation. [6]
- **Q6)** a) Explain specular reflection model for calculating surface intensity at a given point. [7]
 - b) What is Morphing? Explain the process of morphing. [6]

+ + +

SUKIKI

Total No.	of Pages	:	2	
-----------	----------	---	---	--

Seat	
No.	

T.E. (Computer Science and Engineering) (Semester-V)

			(T)	Theory) Examination, May - 2017	
		ch)		SYSTEM PROGRAMMING	
				Sub. Code : 66294	
-				esday, 16-05-2017 Total M to 1.00 p.m.	larks : 100
Instr	uctio		1) 2) 3) 4)	Question No.4 and 8 are compulsory. Answer any two questions from Question No.1, 2 and 3. Answer any two questions from Question No.5, 6 and 7 Figures to right indicate full marks.	
Q1)	a)	What detail		meant by intermediate representation of program?	Explain in [8]
	b)	Disc	uss l	language processing activities in detail.	[8]
Q2)	a)	Write	e in	detail pass structure of an assembler.	[8]
	b)	Expl	ain l	Pass I of a two pass assembler.	[8]
Q3)	a)	State	and	d explain various advanced macro facilities with an exa	mple each. [8]
	b)			in detail, along with sketch/block diagram, the design essor.	of a macro [8]
Q4)	Wr	ite a sh	ort	notes on: (6 marks each)	[18]
	a)	LEX	anc	d YACC LPDT's.	
	b)	Asse	mbl	ly Language Statements.	
	c)	Macı	o D	Definition and Call.	. (

			3L-400
Q5)	a)	What is program Relocation and how it is performed?	[8]
	b)	Discuss in detail; steps in program Development.	[8]
Q6)	a)	Explain Code Optimization in compilation. Brief about Local Code optimization.	& Global [8]
	b)	Explain Compilation of expression.	[8]
Q7)	a)	Explain structure & design of an Editor with neat Diagram.	[8]
	b)	Write and Explain Linking Algorithm.	[8]
Q8)	Writ	te a short notes on (Solve any three 6 mark each).	[18]
	a)	Loader in MS-DOS.	
	b)	Command Dialog.	
	c)	Parameter passing mechanism.	
	d)	Programming Environments.	K
		SUK + + +	

CT 160

Total No. of Pages: 1

Seat	
No.	

T.E. (Computer Science and Engineering) (Part-III) (Semester-V) (Revised) Examination, May - 2017 OBJECT ORIENTED MODELING AND DESIGN (Theory)

Sub. Code: 66295

Day and Date: Wednesday, 17-05-2017

Total Marks: 50

Time: 9.00 a.m. to 11.00 a.m.

Instructions:

- 1) All the Questions are compulsory, provided internal options in each question.
- 2) Figures to the right indicate full marks.
- **Q1)** Attempt any two questions out of three.

 $[2 \times 7 = 14]$

- a) Explain advanced link and association concepts.
- b) Explain scenario and event trace diagram. Draw event trace diagram for phone call.
- c) Explain breaking a system into subsystem with respect to system design.
- **Q2)** Attempt any two questions out of three.

[2×6=12]

- a) What is model? Explain the purpose of modeling.
- b) Explain data flow diagram with example.
- c) List and explain the steps involved in designing algorithms.
- **Q3)** Attempt any two questions out of three.

 $[2 \times 6 = 12]$

- a) Explain adornments that apply to associations.
- b) Explain interaction diagram, its contents and common uses.
- c) Write note on-deployment diagrams.
- Q4) Attempt any two questions out of three.

 $[2 \times 6 = 12]$

- a) Explain different UML diagrams with their purpose.
- b) What is use case diagram? Draw use case diagram for credit card validation system.
- c) Explain types of components and standard stereotypes that apply to components.

Seat	
Seat No.	

T.E. (Computer Science & Engineering) (Part-III) (Semester-V) (Revised) Examination, May - 2017 COMPUTER ALGORITHM

Sub. Code: 66296

Day and Date: Thursday, 18-05-2017 Total Marks: 100

Time: 10.00 a.m. to 1.00 p.m.

Instructions: 1) Questions 4 and 8 are compulsory.

- 2) Attempt any four questions from remaining questions.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data wherever necessary.
- Q1) a) Explain space and time complexity with suitable example. [8]
 - b) Find an Optimal Solution to the Knapsack instance, n=4, m=30, profit (p1, p2, p3, p4) = (27,20,24,15) and weights (w1, w2, w3, w4) = (15, 10, 18, 10). [8]
- Q2) a) Explain Merge Sort Algorithm with example. Show that its complexity is O(n log n). [8]
 - b) Let n=4 and probabilities with which identifiers (a1, a2, a3, a4) = (do, if, int, while) are searched are p(1:4) = (4, 4, 2, 2) and probabilities of unsuccessful searches are q(0:4) = (3, 4, 1, 1, 1). Design optimal binary search tree using dynamic programming. [8]
- Q3) a) Apply Prim's and Kruskal's Algorithm to find minimum Spanning Tree for following graph. [8]

b) Explain solution to all pair shortest path problem using dynamic programming. [8]

P.T.O.

CT	470
	/=4 / U

Q4) Write short note on (Solve any three):

[18]

- a) Randomized Algorithm
- b) Binary Search Algorithm
- c) Huffman Code
- d) 0/1 Knapsack Problem
- Q5) a) Show that CNF satisfiability is reducible to directed Hamiltonian cycle.[8]
 - b) What are connected components and spanning trees? How is BFS algoritm used to find whether graph is connected or not. [8]
- **Q6)** a) Explain solution to Graph Coloring problem using backtracking. [8]
 - b) Explain how to find Articulation point using DFS. Identify articulation points for the following undirected graph by using DFS spanning tree.[8]

- Q7) a) Explain backtracking solution to n-Queens problem. [8]
 - b) Describe and give example of prefix computational model with PRAM.

[8]

Q8) Write short note on:

[18]

- a) Define the following terms:
 - i) Deterministic and non-deterministic algorithms
 - ii) Decision and Optimization Problems
 - iii) P and NP Problems
- b) Butterfly Network
- c) MESH Computational Model.

Seat	
No.	

T.E. (CSE) - I (Semester - V) (Revised) Examination, May - 2017 NETWORK TECHNOLOGIES

		Sub. Code :66297			
•	Day and Date : Friday, 19 - 05 - 2017 Time : 09.00 a.m. to 11.00 a.m.				
Instr	uctior	ns: 1) Question No.1 is compulsory. 2) Solve any three questions from Q. No. 2 to Q. No. 3) Figures to the right indicates full marks. 4) Assume data wherever necessary.	5.		
Q1)	a)	What is GSM? Explain GSM network architecture.	[6]		
	b)	What is BSSID? How it is useful in WLAN technolog	y. [4]		
	c)	Explain WEP protocal.	[4]		
Q2)	a)	Explain sensor node architecture.	[4]		
	b)	Explain the node mobility issue in designing of routi wireless networks.	ng protocols for [3]		
	c)	Determine the frequency reuse distance for a cell r kilometers and a cluster size of 7.	adius of twenty [3]		
	d)	How TDMA time slot is encoded with normal signal but	urst. [2]		
Q3)	a)	What is the role of location updating in GSM? Explain updating with necessary diagram.	normal location [6]		
	b)	Explain Distribution Station Services (DSS) in WLAN	[4]		
	c)	What are passive attacks? Explain any one with examp	ole. [2]		

SL-47	71
--------------	----

- Q4) a) What is sensor network? Explain components of sensor network. [4]
 - b) Explain induced traffic issue in transport layer protocol design for wireless network. [4]
 - c) Explain the concept of time division duplex. [4]
- Q5) a) Draw and explain Bluetooth scatternet architecture. [6]
 - b) Explain various design goals of a transport layer protocol for wireless network. [6]

Seat	
No.	

T.E. (CSE) (Prat - VI) (Semester - VI) Examination, April - 2017 COMPILER CONSTRUCTION (New)

Sub. Code: 66858

Day and Date : Wednesday, 26 - 04 - 2017

Total Marks: 50

Time: 02.00 p.m. to 04.00 p.m.

Instructions:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.

SECTION - I

Q1) a) Explain how to recognize the tokens.

[4]

b) Consider the following grammar

 $S \rightarrow CC$

 $C \rightarrow cC$

 $C \rightarrow d$

Find the canonical collection of sets of LR(1) items and construct the action goto table. [6]

Q2) a) List and explain various compiler construction tools.

[4]

b) Write the code for recursive descent parser for the following grammar. $S \rightarrow AbS$

$$A \rightarrow a \mid da$$

[6]

OR

- b) What are conflicts in Shift-Reduce parser? Explain with the help of an example. [6]
- Q3) What is Left recursion? Explain elimination of left recursion with example.[5]

OR

Explain input buffering in Lexical analysis. Give an example lexeme involving exactly two l's for the given pattern: $(01+21+02)*(1+^{\circ})(1+22)$ [5]

P.T.O.

SECTION - II

Q4) a) Give

i) Syntax Tree

ii) DAG for the expression a+ a*(b-c) + (b-c)*d [4]

b) What is syntax directed definition? Explain the construction of syntax tree for Expressions using syntax directed definitions with the help of an example. [6]

OR

- b) Write an SDD to show how backpathching can be used to generate three address code for Boolean expressions and flow-of-control statements and explain. [6]
- **Q5)** a) Using code generation algorithm, generate the target code for the expression a = (a-b) + (a-c) + (a-c). Also show the values of Register descriptor and address descriptor as code generation progresses. [4]

OR

a) Explain optimization of basic blocks.

[4]

- b) What is peephole optimization? Describe different transformations that are characteristics of Peephole Optimization. [6]
- Q6) With reference to code generation, what is basic block? Describe an algorithm to partition, three address sequences into basic blocks.[5]

OR

Explain Loops in flow graphs.

[5]

Seat	
No.	

T.E. (CSE) (Semester - VI) (Part -III) (Revised) (New) Examination, April - 2017 OPERATING SYSTEM -II

Sub. Code: 66859

Day and Date : Friday, 28 - 04 - 2017

Total Marks: 100

Time: 02.00 p.m. to 05.00 p.m.

Instructions:

- 1) Question No. 1 and Question No. 8 are compulsory. Solve any four questions from remaining questions.
- 2) Figures to the right indicte full marks.
- 3) Clearly mention your assumed data wherever necessary.
- Q1) a) With a neat block diagram of the system kernel, explain architecture of the Unix system[9]
 - b) With a neat schematic of hash queue headers and free list updates, explain the following scenario for the buffer retrieval: The kernel cannot find the block on the hash queue, so it allocates a buffer from the free list. [9]
- Q2) a) Explain the process of conversion of pathname to i-node with algorithm "namei".[8]
 - b) What is super block? List and explain various fields of super block. [8]
- **Q3)** a) Consider the following program.

[8]

```
#include<fcntl.h>
Main()
{
    int fd1, fd2;
    char buf 1[512],buf2[512];
    fd1=open("/etc/ passwd", O_RDONLY);
    fd2=open("/etc/ passwd", O_RDONLY);
    read(fd1, buf1, sizeof(buf1));
    read(fd2, buf2, sizeof(buf2));
}
```

- with the help of above program explain how a process can open a file more that nonce and read it via different file descriptors.
- b) What are pipes? Explain the algorithm "pipe" for creation of unnamed pipes. [8]
- **Q4)** a) State and explain the algorithm "alloc" for allocating disk blocks. [8]
 - b) Explain the mount sytem call. Draw the file system tree before and after Mount. List various entries of the mount table [8]
- **Q5)** a) Explain in detail process state transitions with a neat diagram. [8]
 - b) What is the significance of signals in Unix? Enlist the categories of signals those are defined in system V Unix. [8]
- **Q6)** a) Explain with a diagram, the mapping of process space onto the swap device. [8]
 - b) Briefly explain the functions of line disciplines. Explain call sequence and data flow through line discipline. [8]
- Q7) a) What is context of a process? Explain with diagram components of the context of the process.[8]
 - b) State and explain the algorithm "start" for booting the system. [8]
- **Q8)** Write short note (any three)

 $[3 \times 6 = 18]$

- a) Process table entries
- b) The shell
- c) ioctl system call
- d) System boot and the init process

T.E.(Computer Science and Engineering) (Part-III) (Semester-VI) (Revised) Examination, May - 2017 DATABASE ENGINEERING (Theory)

Sub. Code: 66860

Day and Date: Tuesday, 02-05-2017 Total Marks: 50

Time: 2.00 p.m. to 4.00 p.m.

Instructions: 1) All the questions are compulsory, provided internal options in each

question.

2) Figures to the right indicate full marks.

Q1) Attempt any two questions out of three.

 $[2 \times 7 = 14]$

a) Explain Entity-Relationship Model (E-R) in detail.

b) Write SQL queries to perform given tasks on following schema

Student (snum: integer, sname: string, major: string, level: string, age: integer)

Class (cname: string, room: string, fid: integer)

Enrolled (snum: integer, cname: string)

Faculty (fid: integer, fname string, deptid: integer)

- i) Find the names of all classes that meet in room R 128.
- ii) Find the names of all juniors (Level = JR) who are enrolled in a class taught by I. Teach.
- iii) Find the names of faculty members who teach in every room in which some class is taught.
- iv) Print the Level and the average age of students for that Level, for all Levels except JR.
- c) What is closure of set of functional dependencies? Find closure of set of functional dependencies for given set of functional dependencies.

$$\{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$$

SL-472

Q2) Attempt any two questions out of three.

 $[2 \times 6 = 12]$

- a) Explain different levels of data abstraction.
- b) Explain different Data Manipulation Language (DML) Statements.
- c) Explain Fourth Normal Form with example.

Q3) Attempt any two questions out of three.

 $[2 \times 6 = 12]$

- a) What is data dictionary? Explain Data Dictionary Storage.
- b) Explain Timestamp based Protocol for Concurrency Control.
- c) What are the different types of failure?

Q4) Attempt any two questions out of three.

 $[2 \times 6 = 12]$

- a) Explain Dynamic Hashing with Example.
- b) Explain Lock-based Protocol for Concurrency Control with advantages and disadvantages.
- c) Explain the use of Shadow Paging in Recovery with example.

Seat	
No.	

T.E.(Computer Science and Engineering) (Semester-VI) **Examination, May - 2017**

STORAGE NETWORKS **Sub. Code: 66861** Day and Date: Thursday, 04-05-2017 Total Marks: 100 Time: 2.00 p.m. to 5.00 p.m. **Instructions:** 1) Figures to the right indicate full marks. 2) Question no. 4 & Question no. 8 are compulsory. Attempt any Two Questions from Q.1 to Q.3 and from Q.5 to Q.7. 3) Explain key characteristics of Data Center Elements? **Q1**) a) [8] The average I/O size of an application is 64 KB. The following b) specifications are available from the disk manufacture: average seek time = 5 ms, 7,200 rpm, transfer rate = 40 MB/s. Determine the maximum IOPS that could be performed with the disk for this application. Describe iSCSI Protocol Stack? **Q2)** a) [8] b) List out the benefits of NAS? [8] Explain the different Fibre Channel Topologies? **Q3**) a) [8] An application has 1,000 heavy users at a peak of 2 IOPS each and 2,000 typical users at a peak of 1 IOPS each, with a read/write ratio of 2:1. It is estimated that the application also experiences an overhead of 20 percent for other workloads. Calculate the IOPS requirement for RAID 1, RAID 3, RAID 5, and RAID 6.? [8] **Q4)** Write a note on (Attempt any Three) [18] Components of Intelligent Storage System. a) b) FC-2: Data transfer. c) Components of NAS.

Direct Access File System (DAFS).

d)

		\mathbf{S}	L-473
Q5)	a)	Demonstrate Asymmetric storage virtualization with diagram?	[8]
	b)	Discuss the limitations of non-virtualized storage networks?	[8]
Q6)	a)	Explain BC Planning Lifecycle?	[8]
	b)	Illustrate the various business/technical considerations for imple a backup solution?	ementing [8]
Q7)	a)	Explain LVM-Based Replication with clean & neat diagram?	[8]
	b)	Describe Backup Granularity?	[8]
Q8)	Writ	te a note on (Attempt any Three)	[18]
	a)	Uses of Local Replicas.	
	b)	Restore & Restart Consideration in backup.	
	c)	Virtualization in I/O path.	
	d)	Storage security framework.	

Seat	
No.	

T.E.(C.S.E) (Part-II) (Semester-VI) Examination, May - 2017 INFORMATION SECURITY (Theory

		INI		ON SECURI' o. Code : 6686	ì	y)
•	Day and Date : Saturday, 06-05-2017 Total Marks : 50 Time : 2.00 p.m. to 4.00 p.m.					
Instr	uctior	ns: 1) 2)	Q.3 and Q.6 are Solve any one o Q.5.	e compulsory. out of Q.1 and Q.2	2, also solve any	one fromQ.4 and
Q1)	a)	List and	explain the secu	arity mechanisms	s defined in X.8	800. [6
	b)	Explain	key generation is	n DES algorithm	with neat diag	gram. [6
Q2)	a)	Explain	the RSA algorit	hm. Perform enc	ryption & decr	ryption using.
		RSA alg	orithm if $p = 5$,	q = 11, e = 3, M	[= 9	[6
	b)	State the Function	-	s for a Hash fu	nction. Explai	in Simple Hasl [6
Q3)	a)	Compare	e			[6
		i) Blo	ock Cipher and S	Stream Cipher		
		ii) Coi	nfusion and Diff	fusion		
	b)	-		key exchange. Al Hellman Key exc	•	letail man-in-the [7
Q4)	a)	Explain I	Digital Signature	Standard using D	igital signature	algorithm (DSA)
	b)	What are	e the differences	s between Kerbe	ros version 4 a	and version 5?[7

SL-474

Q5) a) Draw the SSL protocol stack. Explain its architecture. **[6]**

[6]

Describe the different types of Intrusion detection system. b)

Q6) Write a short note on any two.

[12]

- S/MIME a)
- **SET Participants** b)
- Unix Password scheme c)